RELATIVE REACTIVITY OF CHLORINE ATOMS WITH NO, NO₂ AND HCCl₂F AT ROOM TEMPERATURE AND ATMOSPHERIC PRESSURE

SOTIRIS GLAVAS[†] and JULIAN HEICKLEN

Department of Chemistry and Communications and Space Sciences Laboratory, The Pennsylvania State University, University Park, PA 16802 (U.S.A.)

(Received November 29, 1984; in revised form February 14, 1985)

Summary

The reactions of chlorine atoms with NO, NO₂ and HCCl₂F have been studied at 294 K and 1 atm total pressure. The experiments involved steadystate photolysis of Cl_2 -HCCl₂F-O₂-NO-NO₂-N₂ mixtures. Two sets of experiments were done, one in which NO removal was monitored by its chemiluminescent reaction with O₃, and one in which CClFO was monitored by *in situ* IR spectroscopy. The reactions studied were

$$Cl + HCCl_2F \longrightarrow HCl + CCl_2F \tag{1}$$

$$Cl + NO + M \longrightarrow ClNO + M$$
 (6)

$$Cl + NO_2 + M \longrightarrow ClONO (or ClNO_2) + M$$
 (7)

From the chemiluminescence experiments k_6/k_1 was found to be $(1.0 \pm 0.2) \times 10^{-17}$ cm³ with N₂ as a chaperone which leads to a value of $k_1 = 1.0 \times 10^{-14}$ cm³ molecule⁻¹ s⁻¹ based on the literature value for k_6 of $1.7 \times 10^{-32} \times \exp(+530/T)$ cm⁶ molecule⁻² s⁻¹ (where T is in kelvins). Also k_7/k_6 was found to be 2.5 ± 1.0 which gives $k_7 = 2.5 \times 10^{-31}$ cm⁶ molecule⁻² s⁻¹, which is considerably lower than the literature values of $(7.2 - 16) \times 10^{-31}$ cm⁶ molecule⁻² s⁻¹. Part or all of the discrepancy may reflect the possibility that k_7 is in its pressure fall-off region under our conditions of 1 atm pressure.

1. Introduction

We have initiated a series of experiments in our laboratory to study the reactions of CX_2ClO_2 with NO and NO₂ (X = H, F or Cl). We generate the CX_2ClO_2 species by photolyzing Cl_2 in the presence of HCX₂Cl and O₂. Consequently, the reactions of chlorine atoms with HCX₂Cl, NO and NO₂ must be known to interpret our data. During the course of our investigations,

[†]Present address: Department of Chemistry, University of Patras, Patras, Greece.

carried out at 1 atm pressure and 294 K, it became clear that the low pressure literature values for chlorine atom reactions with NO and NO₂ gave a relative rate coefficient inconsistent with our data. Thus we have remeasured this relative rate under our conditions and report the results here together with our results for the relative rate of chlorine atoms and NO with $HCCl_2F$, for which no other measurement exists.

Chlorine atoms are known to add readily to both NO and NO₂, the respective rate coefficients being $1.7 \times 10^{-32} \exp(+530/T)$ (where T is in kelvins) and 7.2×10^{-31} cm⁶ molecule⁻² s⁻¹ (at 298 K) with N₂ as a chaperone [1]. The reaction with NO was studied by Clark *et al.* [2] over the temperature range 270 - 620 K and their Arrhenius expression gives a value of 5.2×10^{-32} cm⁶ molecule⁻² s⁻¹ at 471 K which is somewhat higher than the value of $(2.1 \pm 0.6) \times 10^{-32}$ cm⁶ molecule⁻² s⁻¹ found earlier by Ashmore and Spencer [3] at this temperature. Ravishankara *et al.* [4] reported a value of $1.63 \times 10^{-33} \exp(+1186/T)$ cm⁶ molecule⁻² s⁻¹ for helium as a chaperone between 240 and 350 K. This gives a value at 298 K of 8.8×10^{-32} cm⁶ molecule⁻² s⁻¹ at 298 K for N₂ as a chaperone computed from the Arrhenius expression of Clark *et al.* [2].

The value of the rate coefficient for the addition of chlorine atoms to NO₂ was given as 7.2×10^{-31} cm⁶ molecule⁻² s⁻¹ with N₂ as a chaperone at 298 K by Clyne and White [5] as a provisional value. Zahniser *et al.* [6] obtained a value of 8×10^{-31} cm⁶ molecule⁻² s⁻¹ at 300 K with helium as a chaperone. This value was confirmed by Ravishankara *et al.* [4] who obtained $1.45 \times 10^{-31} \exp(+529/T)$ cm⁶ molecule⁻² s⁻¹ and $3.42 \times 10^{-31} \exp(+460/T)$ cm⁶ molecule⁻² s⁻¹ and $3.42 \times 10^{-31} \exp(+460/T)$ cm⁶ molecule⁻² s⁻¹ for helium and N₂ as chaperones respectively. These values lead to respective values at 298 K of 8.55×10^{-31} cm⁶ molecule⁻² s⁻¹ and 1.6×10^{-30} cm⁶ molecule⁻² s⁻¹. These values are even higher than that of Clyne and White [5]. All of these values are low pressure values where the reaction is termolecular. There is no measurement at atmospheric pressure where the reaction could be in the pressure fall-off region and the rate constant would be reduced. Therefore we have measured this rate coefficient relative to that for addition of chlorine atoms to NO at 1 atm pressure.

2. Experimental details

Mixtures of Cl_2 , $CHCl_2F$, O_2 and NO_2 with and without NO were irradiated at 366 nm in a cylindrical Pyrex cell of length 10 cm and diameter 3.7 cm which was equipped with NaF windows, and placed in the sample beam of a double-beam Beckman Acculab 9 IR spectrometer. A conventional mercury-free high vacuum line utilizing Teflon stopcocks with Viton O-rings was used. The radiation was from an Oriel high pressure 150 W mercury arc lamp and passed through a Corning filter CS 7-37 before entering the reaction cell. The strong CCIFO peak at 1832 cm⁻¹ was monitored continuously during irradiation using an external recorder.

In separate experiments, NO disappearance was monitored continuously both during irradiation and in the dark after irradiation had been terminated using the chemiluminescent reaction between NO and O_3 in the system described in a previous paper [7]. The initial rates of NO removal during irradiation were corrected for the time constant of the measurement system. The measurement time constant was 0.42 s^{-1} leading to a maximum correction of 30%.

Absorbed IR light intensities I_a were determined by the photolysis of optically equivalent amounts of NO₂ taking $-\Phi(NO_2) = 2.0$. For the chemiluminescence runs azomethane was photolyzed in the presence of NO and O₂, the quantum yield for NO removal for this system being 4.0.

The chlorine (Matheson high purity Research grade) was purified by distillation from 143 to 113 K. NO (Matheson) was purified by distillation from 87 to 77 K; the white color of the solid NO indicated that it was free of NO₂. The NO₂ (Matheson) for the IR experiments was mixed with oxygen and cooled to 77 K and allowed to warm up to room temperature several times before use. It was stored in oxygen. For the chemiluminescence study NO₂ was used directly from the cylinder and corrected for the 5.0% NO content as determined by chemiluminescence analysis. O₂ and N₂ were slowly passed through two traps maintained at 77 K. Chromatographic analysis showed [CH₄] \leq 2.5 ppm in N₂ and [CH₄] \approx 20 ppm in O₂ with no detectable levels of other hydrocarbon impurities. The HCCl₂F was purified by distillation from 156 to 143 K. Mass spectroscopy showed it to be free of impurities.

3. Results

With IR analysis, several runs were done in which Cl_2 was photolyzed in the presence of $HCCl_2F$, O_2 and NO_2 , but in the absence of NO. CClFO formation was monitored. No CClFO was produced until all the NO_2 was consumed, but then CClFO was produced in high yields. With NO also present initially, CClFO formation was immediate and to begin with was proportional to the irradiation time. Then it levelled off before it rose sharply after a time corresponding to total NO_x consumption. Presumably the levelling off corresponds to the exhaustion of NO, which occurs before the exhaustion of NO_2 . Besides the CClFO peaks, no other IR peaks could be positively identified, though product bands did occur at 940 cm⁻¹ and a doublet at 1720 cm⁻¹.

For experiments with both NO and NO₂ present initially, the initial quantum yields $\Phi_i(\text{CCIFO})$ of CCIFO formation are listed in Table 1. These runs were done at a constant [NO₂]/[NO] value of 0.211 ± 0.025 but with a tenfold variation of both [NO] and [NO₂]. As the concentration of these species increases by a factor of 10, $\Phi_i(\text{CCIFO})$ drops by a factor of about 4 · 6.

From the chemiluminescence experiments, initial quantum yields $-\Phi_i(NO)$ of NO disappearance were obtained from the irradiated mixtures

[NO] (Torr)	[NO ₂] (Torr)	[HCCl ₂ F] (Torr)	[O ₂] (Torr)	$\Phi_i(CClFO)$
0.057	0.011	405	49.0	6.40
0.089	0.019	672	34.9	8.26
0.093	0.018	414	34.7	6.53
0.097	0.023	430	34.4	6.85
0.140	0.026	690	28.0	6.12
0.290	0.050	479	56.7	3.28
0.393	0.081	690	47.3	3.05
0.472	0.100	700	43.9	2.29
0.560	0.110	473	57.3	1.49
0.588	0.127	668	49.1	1.71

CClFO quantum yields of formation from the photolysis of Cl_2 at 366 nm in the presence of $HCCl_2F-O_2-NO-NO_2$ mixtures^a

^a[NO₂]/[NO] = 0.211 ± 0.025; [Cl₂] = 9.3 ± 1.0 Torr; $I_a = 1.00 \pm 0.11$ mTorr s⁻¹; T = 296 K.

TABLE 2

NO quantum yields of disappearance from the photolysis of Cl_2 at 366 nm in the presence of $HCCl_2F-O_2-NO-NO_2-N_2$ mixtures^a

$10^4 \times [NO]/[HCCl_2F]$	[NO] (mTorr)	[NO ₂] (mTorr)	[HCCl ₂ F](Torr)	$-\Phi(NO)$
[NO ₂]/[NO] ≈ 3.8				
2.25	6.49	21.5	28.9	1.06
3.41	5.60	21 .5	16.4	0.622
7.49	5.71	22.4	7.62	0.378
16.6	7.87	30.1	4.75	0.264
$[NO_2]/[NO] \approx 0.85$				
0.77	12.0	9.01	155	5.40
2.25	8.2	8.95	36.5	3.07
5.37	11.0	7.96	20.5	3.15 ^b
5.59	11.4	7.93	20.4	2.05
8.89	19.3	17.6	21.7	1.73
12.9	10.3	8.7	8.01	1.54 ^b
23.3	9.25	10.9	3.97	0.61
25.7	10.6	8.85	4.12	1.01

^a[Cl₂] \approx 1 Torr; [O₂] \approx 30 · 50 Torr; mixture brought to 1 atm total pressure with N₂; $I_a = 0.27 \pm 0.3 \text{ mTorr s}^{-1}$; T = 294 K. ^b $I_a = 0.41 \pm 0.01 \text{ mTorr s}^{-1}$.

initially containing both NO and NO₂. These values are listed in Table 2; $-\Phi_i(NO)$ drops as $[NO_x]/[HCCl_2F]$ increases, the inhibition being greater at the higher $[NO_2]/[NO]$ value, indicating the inhibiting effect of NO₂ on the system.

TABLE 1

4. Discussion

The results of the oxidation of CCl_2F can be explained by the mechanism

$$Cl_{2} + h\nu (366 \text{ nm}) \longrightarrow 2Cl \quad (rate, I_{a})$$

$$Cl + HCCl_{2}F \longrightarrow HCl + CCl_{2}F \qquad (1)$$

$$CCl_{2}F + O_{2} + M \longrightarrow CCl_{2}FO_{2} + M \qquad (2)$$

$$CCl_{2}FO_{2} + NO \longrightarrow CCl_{2}FO + NO_{2} \qquad (3)$$

$$CCl_{2}FO_{2} + NO_{2} (+M) \overleftrightarrow{CCl_{2}FO_{2}NO_{2}} (+M) \qquad (4)$$

$$CCl_{2}FO \longrightarrow CClFO + Cl \qquad (5)$$

$$Cl + NO + M \longrightarrow ClNO + M \qquad (6)$$

$$Cl + NO_{2} + M \longrightarrow ClONO (or ClNO_{2}) + M \qquad (7)$$

$$Cl + ClNO \longrightarrow Cl_{2} + NO \qquad (8)$$

$$Cl + ClONO (or ClNO_2) \longrightarrow Cl_2 + NO_2$$
 (9)

The mechanism of the CX₃ radical oxidation has been discussed previously [8 - 11]. The only significant reaction with O_2 is reaction (2). We propose reactions (3) and (4) for the fate of CCl_2FO_2 by analogy with the reactions of HO_2 , CH_3O_2 and CCl_3O_2 . Reaction (3) accounts for the conversion of NO to NO₂ and reaction (4) accounts for the unstable intermediate $CCl_2FO_2NO_2$ which can decompose thermally to act as a source of free radicals after the radiation is terminated. The CCl_2FO radical is thermodynamically unstable and decomposes via reaction (5) [9]. Reactions (6) - (9) are well known [1].

During the initial stages of the photolysis, the back process in reaction (4) and reactions (8) and (9) are unimportant and the rest of the mechanism leads to the steady-state rate law for NO removal

$$\frac{2\beta}{-\Phi(\text{NO})} = R + \frac{(1+R)(1+\alpha)k_6[\text{NO}][\text{M}]}{k_1[\text{HCCl}_2\text{F}]}$$
(I)

where

$$\alpha = \frac{k_7[\text{NO}_2]}{k_6[\text{NO}]}$$

$$R = \frac{k_4[\text{NO}_2]}{k_3[\text{NO}]}$$

$$\beta = \frac{1 + (1 + R)k_6[\text{NO}][\text{M}]}{k_1[\text{HCCl}_2\text{F}]}$$

Under the conditions of our experiments $\beta \approx 1$. Also for a fixed value of $[NO_2]/[NO]$ both α and R are constants. Thus a plot of $-\Phi(NO)^{-1}$ versus $[NO]/[HCCl_2F]$ should give a straight line with intercept R and slope $(1 + R)(1 + \alpha)k_6[M]/k_1$. From the slopes at the two different $[NO_2]/[NO]$ values both k_6/k_1 and k_7/k_6 can be determined. Using these, β can be computed and a new plot made to obtain better values of k_6/k_1 and k_7/k_6 . By successive iterations we find that $k_6/k_1 = (1.0 \pm 0.2) \times 10^{-17}$ cm³ for $M \equiv N_2$ and $k_7/k_6 = 2.5 \pm 1.0$. Both plots also give $k_4/k_3 = 0.50 \pm 0.10$. By rearranging eqn. (I) slightly, all of the data can be placed on a common plot. The rearrangement gives

$$\frac{2\beta}{-\Phi(\text{NO})R} = 1 + \frac{(1+R^{-1})(1+\alpha)k_6[\text{NO}][\text{M}]}{k_1[\text{HCCl}_2\text{F}]}$$
(II)

Figure 1 shows a plot of the left-hand side of eqn. (II) versus $(1 + R^{-1})(1 + \alpha)[NO]/[HCCl_2F]$. The data are fitted by a straight line in which the least accurate points at high [NO]/[HCCl_2F] have been neglected. The line gives an intercept of 1.0 and a slope of 240 which corresponds to $k_6[M]/k_1$ and gives the value for k_6/k_1 of 1.0×10^{-17} cm³. With the literature value for k_6 , k_1 becomes 1.0×10^{-14} cm³ molecule⁻¹ s⁻¹, which is reasonable.

The value of 2.5 ± 1.0 found for k_7/k_6 is considerably lower than the literature values of 7 - 16. At our pressure of 1 atm, k_7 may be in the pressure fall-off region, and this could account for the lower k_7/k_6 obtained by us. In fact, data on the thermal decomposition of ClNO₂ at 150 K indicate that at 1 atm N₂, the fall-off in rate constant is about a factor of 4 [12], about the same as obtained here.

For the experiments in which $\Phi(CCIFO)$ was analyzed by IR spectroscopy, the rate law is

$$\Phi_{i}(\text{CClFO})^{-1} = \frac{k_{4}[\text{NO}_{2}]}{2k_{3}[\text{NO}]} + \left(\frac{1}{2} + \frac{k_{4}[\text{NO}_{2}]}{2k_{3}[\text{NO}]}\right) \left(\frac{k_{6}[\text{NO}][\text{M}] + k_{7}[\text{NO}_{2}][\text{M}]}{k_{1}[\text{HCCl}_{2}\text{F}]}\right)$$
(III)

Substituting 0.211 for $[NO_2]/[NO]$ as seen in Table 1 and taking $[M] \approx [HCCl_2F]$ we obtain

$$\Phi_{i}(\text{CClFO})^{-1} = \frac{0.106k_{4}}{k_{3}} + \left(\frac{1}{2} + \frac{0.106k_{4}}{k_{3}}\right) \left(\frac{k_{6} + 0.211k_{7}}{k_{1}}\right) [\text{NO}]$$
(IV)

Figure 2 is a plot of $\Phi_i(\text{CClFO})^{-1}$ versus [NO] for the data from Table 1. The plot is fitted by the best straight line which gives a slope of 0.91 ± 0.10 Torr⁻¹ and an intercept of 0.050 ± 0.015 . From the intercept, k_4/k_3 is deduced to be 0.47 ± 0.15 in good agreement with the results from the chemiluminescence experiments and in reasonable agreement with the value of 0.68 found for the analogous reactions with the CCl₃O₂ radical [13]. With this value and the value $k_2/k_6 = 2.5$ found above, the slope of the plot in

Fig. 1. Plot of $2\beta/\{-\Phi(NO)R\}$ vs. $(1 + R^{-1})(1 + \alpha)[NO]/[HCCl_2F]$ at 294 K: •, $[NO_2]/[NO] = 3.8$; •, $[NO_2]/[NO] = 0.85$.

Fig. 2. Plot of $\Phi_i(CClFO)^{-1}$ vs. [NO] for runs with $[NO_2]/[NO] = 0.211 \pm 0.020$ at 296 K.

Fig. 2 can be used to give $k_6/k_1 = 3.3 \times 10^{-17} \text{ cm}^3$ with HCCl₂F as a chaperone. Thus HCCl₂F is 3.3 times as efficient as N₂ as a chaperone in reaction (6).

Acknowledgments

We thank R. Simonaitis for helpful suggestions and discussions. This work was supported by the Atmospheric Sciences Section of the National Science Foundation through Grants ATM 76-83378 and ATM 78-16832 and by the National Aeronautics and Space Administration through Contract NAS7-100 with the Jet Propulsion Laboratory for which we are grateful. Sotiris Glavas also thanks the Greek government for a NATO fellowship.

References

- 1 R. T. Watson, J. Phys. Chem. Ref. Data, 6 (1977) 871.
- 2 T. C. Clark, M. A. A. Clyne and D. H. Stedman, Trans. Faraday Soc., 62 (1966) 3354.
- 3 P. G. Ashmore and M. S. Spencer, Trans. Faraday Soc., 55 (1959) 1868.
- 4 A. R. Ravishankara, G. Smith and D. D. Davis, Proc. 13th Informal Conf. on Photochemistry, Clearwater Beach, FL, 1978, Paper R1.
- 5 M. A. A. Clyne and I. F. White, as reported by Watson [1].
- 6 M. S. Zahniser, J. S. Chang and F. Kaufman, J. Chem. Phys., 67 (1977) 997.
- 7 R. Simonaitis and J. Heicklen, Int. J. Chem. Kinet., 10 (1978) 67.

- 8 R. K. M. Jayanty, R. Simonaitis and J. Heicklen, J. Photochem., 4 (1975) 381.
- 9 E. Sanhueza, I. C. Hisatsune and J. Heicklen, Chem. Rev., 76 (1976) 801.
- 10 H. M. Gillespie, J. Garraway and R. J. Donovan, J. Photochem., 7 (1977) 29.
- 11 E. Sanhueza, J. Photochem., 7 (1977) 325.
- 12 M. L. Dutton, D. L. Bunker and H. H. Harris, J. Phys. Chem., 76 (1972) 2614.
- 13 R. Simonaitis and J. Heicklen, Chem. Phys. Lett., 62 (1979) 473.